We examined the impact of catecholamine depletion (CD) achieved by oral administration of alpha-methyl-paratyrosine (AMPT) on probabilistic reversal learning and passive avoidance (PA) in 15 female subjects with major depressive disorder in full remission (RMDD) and 12 healthy female controls. The CD did not affect significantly the acquisition phase of the reversal learning task. However, CD selectively impaired reversal of the 80-20 contingency pair. In the PA learning task, CD was associated with reduced responding toward rewarding stimuli,
although the RMDD and control subjects did not differ regarding these CD-induced changes in reward processing. Interestingly, the performance decrement produced by AMPT on both www.selleckchem.com/products/torin-1.html of these tasks was associated with the level of decreased metabolism in the perigenual anterior cingulate cortex. In an additional examination using the
affective Stroop task we found evidence for impaired executive attention as a trait abnormality in MDD. In conclusion, this study showed specific effects of CD on the processing of reward-related stimuli in humans and confirms earlier investigations that show impairments of executive attention as a neuropsychological trait in affective PSI-7977 nmr illness. Neuropsychopharmacology (2009) 34, 2691-2698; doi:10.1038/npp.2009.95; published online 12 August 2009″
“Psychosocial stress is a risk factor for development and exacerbation of neuropsychiatric illness. Repeated stress causes biochemical adaptations in endocannabinoid (eCB) signaling that contribute to stress-response habituation, however, the synaptic correlates of these adaptations have not been
examined. Here, we show that the synthetic enzyme for the eCB 2-arachidonoylglycerol (2-AG), diacylglycerol (DAG) lipase alpha, is heterogeneously expressed in the amygdala, and that levels of 2-AG and precursor DAGs are increased in the basolateral amygdala (BLA) after 10 days, but not ICG-001 1 day, of restraint stress. In contrast, arachidonic acid was decreased after both 1 and 10 days of restraint stress. To examine the synaptic correlates of these alterations in 2-AG metabolism, we used whole-cell electrophysiology to determine the effects of restraint stress on depolarization-induced suppression of inhibition (DSI) in the BLA. A single restraint stress exposure did not alter DSI compared with control mice. However, after 10 days of restraint stress, DSI duration, but not magnitude, was significantly prolonged. Inhibition of 2-AG degradation with MAFP also prolonged DSI duration; the effects of repeated restraint stress and MAFP were mutually occlusive.