Ten ears of wheat plants at flowering stage (Zadok’s stage 60) were infected with 2 droplets of 20 μl of conidia suspension. Subsequently, the infected wheat plants were sprayed with fungicide dilutions till run off and placed in a growth chamber at 22°C under a relative humidity of 100% for 2 days to guarantee selleckchem the conidial germination and penetration. After 2 days, the plants were incubated for 12 days in a growth chamber at 22°C under a light regime of 16 h light/8 h dark. Fourteen days after inoculation, the infection was assessed based on the surface of the ear covered with Fusarium symptoms:1 = healthy; 2 = up to 25%; 3 = 25 to 50%; 4 = 50 to 75%; 5
= 75 to 100% of the ear covered with symptoms. The experiment was repeated twice in time. DNA extraction and fungal quantification using a Q-PCR approach To quantify the amount of Fusarium biomass in the in vitro assays, fungal biomass retrieved from each individual well was centrifuged
and supernatant was eliminated. The pellet freeze-dried for 6 h at -10°C and 4 h at -50°C (Christ Alpha 1-2 LD Plus, Osterode, Deutschland). {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| Samples were stored at -20°C upon extraction. DNA extraction was performed as previously described by Audenaert et al. (2009) [42] based on the method established by Shaghai and Mahroof et al. (1989) [43]. For PCR, amplification of the EF1α gene, the forward primer FgramB379 (5′-CCATTCCCTGGGCGCT-3′) and the reverse primer FgramB411 (5′-CCTATTGACAGGTGGTTAGTGACTGG-3′) were used [44]. The real-time PCR mix consisted of 12.5 μl 2 × SYBR Green PCR Master Mix (Stratagene), 250 nM of each primer, 0.5 μg/μl bovine serum albumin (BSA) and 2 μl of template DNA. PCR was performed on a 7000 series Detection System (Applied Biosystems) using the following PCR
protocol: 2 min at 50°C, 10 min at 95°C, 40 cycles of 95°C for 15 s and 62°C for 1 min followed by a dissociation analysis at 55°C to 95°C. A standard curve was established in threefold using a twofold dilution series of pure fungal DNA from 100 ng up to 3.125 ng. The amount of fungal DNA was calculated from the cycle threshold (Ct) and the Methane monooxygenase amount of fungal material in control samples. Measurement of H2O2 and DON, application of catalase H2O2 formation in the fungicide experiments was measured 4 h, 24 h and 48 h post inoculation using a TMB (trimethylbenzidin) assay. This assay is based on the conversion of TMB to a blue stain upon reaction with H2O2 in the presence of peroxidases. 250 μl of the conidia suspension was removed from a well and amended with an excess of 100 μl horse radish peroxidase (500 U/ml) and 150 μl of TMB (1 mg/ml). TMB was dissolved in 100% ethanol and the stock solution of 1 mg/ml was prepared in 50 mM of Tris-acetate buffer (pH 5.0). H2O2 formation was determined by FG-4592 research buy measuring the absorbance at 620 nm in duplicate in each time point and in two independent experiments.