Differences in apoptosis induced by facultative-pathogenic and non-pathogenic mycobacteria in BALB/c and C57BL/6 dendritic cells M. tuberculosis resides primarily in alveolar macrophages of infected humans. Nevertheless, at least in the lungs of infected mice, a large percentage of M. tuberculosis infected cells were found to be
dendritic cells [38]. Consequently, we examined whether the difference in the apoptotic response between non-pathogenic mycobacteria and facultative-pathogenic mycobacteria observed in macrophages also manifests itself in bone-marrow-derived dendritic cells (BMDD). Thus BALB/c and C57BL/6 BMDDs were infected with GFP-expressing M. smegmatis and BCG strains for two hours, then washed and incubated in media with gentamycin for an additional 20 hours. The rate of infection was similar LGX818 molecular weight across all conditions and cells as determined by flow cytometry (GFP fluorescence intensity shifts) and colony CCI-779 nmr forming units on agar plates (data not shown). The number of
hypodiploid positive cells was quantified using the PI-based flow cytometry assay described before. M. smegmatis infected C57BL/6 and BALB/c dendritic cells showed a significant increase in apoptosis (about 60% in both) when compared to BCG and uninfected cells (p < 0.0001; Figure 8A and 8B). Interestingly, in contrast to BMDMs in BMDDs the facultative-mycobacteria BCG induced a significant increase in apoptosis after one day of infection of about 15% for C57Bl/6 and 25% for BALB/c
compared to about 5% in untreated cells (p < 0.0001; Figure 8A and 8B). Tariquidar solubility dmso Our results suggest that BMDDs are inherently more susceptible for undergoing apoptosis upon infection with facultative mycobacteria than macrophages in BALB/c (compare Figures 1B and 8B). They also indicate that there is a profound difference between bone marrow-derived macrophages and dendritic cells in C57Bl/6 mice in regard to apoptosis induction upon infection with non-pathogenic mycobacteria (compare Figures 7A and 8A). This difference could be due to the inherently increased activity of NOX2 enzyme complex Idelalisib ic50 in dendritic cells when compared to macrophages [39]. NOX2 in dendritic cells is thought to keep the phagosome at a more neutral pH in order to facilitate generation antigenic peptides for cross presentation [39]. One of the consequences of increase NOX2 activity is an accumulation of reactive oxygen species (ROS) and increases in ROS levels have been shown to shift the balance of TNF-R1 signaling in favor of JNK activation and the induction of apoptosis [32, 37]. In order to address the potential role of ROS mediated apoptosis induction in C57Bl/6 derived BMDMs and BMDDs, cells were infected as described before and the amount of ROS was detected using dihydroethidium (DHE) and quantified by flow cytometry (Figure 9).