The OPTN/UNOS Living Donor Transplant Committee restructured to enfranchise organ donors and recipients, and to seek their perspectives on living donor
transplantation. In 2008, for the first PSI-7977 time in OPTN history, deceased donor organs decreased compared to the prior year. Except for lung donors, deceased organ donation fell from 2007 to 2008. Donation after cardiac death (DCD) has accounted for a nearly 10-fold increase in kidney donors from 1999 to 2008. Use of livers from DCD donors declined in 2008 to 2005 levels. Understanding health risks associated with the transplantation of organs from ‘high-risk’ donors has received increased scrutiny.”
“P>The expression of TfR/CD71 in T-cell surface plays a pivotal role in T-cell activation and proliferation. Anti-human-TfR monoclonal antibody could be used as an immunosuppressant in transplant therapy because of their potential
to suppress T-cell responses to alloantigens. We therefore examined the feasibility of an anti-human-TfR chimeric antibody (D2C) in suppression of T-cell activation in vitro and graft-versus-host reaction (GVHR) in animals. D2C is a chimeric antibody produced by introducing the human Fc fragment. This antibody showed low antigenicity but high suppressive effect manifested by high potency buy Dorsomorphin to block the activation and proliferation of lymphocytes in response to alloantigens. D2C also showed capability to mediate complement-dependent cytotoxicity, which could be correlated with TfR expression in peripheral blood mononuclear cells (PBMCs). Importantly, administration of D2C significantly prolonged survival time of nude mice transplanted with human PBMCs when compared
with that of control IgG-treated Bucladesine chemical structure animals (61.2 +/- 4.46 vs. 22.1 +/- 5.5 days), which is associated with inhibited GVHR characterized by decreased interleukin-1 and tumor necrosis factor alpha production derived from transplanted PBMCs. Human-TfR chimeric antibody such as D2C could be a valuable option for the treatment of acute form of graft-versus-host disease.”
“Damage induced in low-k porous organosilicate glass (SiCOH) dielectric films by exposure to an electron cyclotron resonance (ECR) plasma was investigated. The effects of charged-particle bombardment and vacuum ultraviolet radiation were separated. Flux measurements showed that the ECR plasma has a greater photon flux in the vacuum ultraviolet (VUV) range than in the UV range. Damage was measured by examining the surface potential and capacitance-voltage characteristics after exposure. It was found that during argon ECR plasma processing, 75% of the charge accumulation comes from ions at the surface, while 25% of the charge accumulation occurs from charge trapped within the bulk of the dielectric film. The charge accumulation can be modified by changing the bias voltage of the wafer chuck. UV exposure was shown to repair both sources of damage.